Role of stem cell proteins and microRNAs in embryogenesis and germ cell cancer.
نویسندگان
چکیده
Embryonic stem (ES) cells are pluripotent cells derived from the inner cell mass of the blastocyst. These cells can proliferate indefinitely and differentiate into all cell lineages. Germ cell cancers (GCC) mimic embryonic development to a certain extent. The origin of GCC trace back to primordial germ cells/gonocytes in the embryo, which determines their specific characteristics such as totipotency and overall (exceptional) sensitivity to DNA damaging agents. Thus GCC provide a useful model system for the study of gene regulation involved in oncogenesis as well as development. Several reports have demonstrated the role of specific proteins and microRNAs (miRs) in the control of pluripotency and thus early development. miRs are small non-coding RNA molecules that post-transcriptionally regulate gene expression by base-paring to protein encoding mRNAs. miRs are predicted to regulate up to 30% of the protein-encoding genes within the human genome. They are expressed in a tissue-specific and developmentally regulated manner. Aberrant miR expression and its correlation with development and progression of cancers is an emerging field. Important evidences have shown that knock-down by synthetic anti-sense oligonucleotides or re-expression of specific miRs by pre-miR can induce drug sensitivity, leading to increased inhibition of cancer cell growth, invasion, and metastasis. In addition, miRs have been found in body fluids of patients with different types of diseases, including cancer. Therefore, investigation of miRs can shed light on the process of pathogenesis, and may provide biomarkers for diagnosis and prognosis. A subset of miRs is specifically expressed in ES cells and GCC, suggesting their critical role in early embryogenesis and development. In this review we discuss the current view of the biology of embryonic stem cell proteins and miRs in GCC, and their potential clinical impact.
منابع مشابه
The role of exosomes contents on genetic and epigenetic alterations of recipient cancer cells
Exosomes, as a mediator of cell-to-cell transfer of genetic information, act an important role in intercommunication between tumor cells and their niche including fibroblasts, endothelial cells, adipocytes and monocytes. Several studies have shown that tumor cells can influence their neighboring cells by releasing exosomes. These exosomes provide signaling cues for stimulation, activation, prol...
متن کاملI-51: The Role of the Transcription FactorGCNF in Germ Cell Differentiation and Reproductionin Mice
The germ cell nuclear factor (GCNF) is a member of the nuclear receptor super family of transcription factors. GCNF expression during gastrulation and neurulation is critical for normal embryogenesis in mice. GCNF represses expression of the POU domain transcription factor Oct4 during mouse post-implantation development in vivo. Oct4 is thus down-regulated during female gonadal development, whe...
متن کاملA Glance into Cancer Stem Cells
The presence of stem cells in leukemia and solid tumors has been demonstrated in recent decades. Cancer stem cells have the potency of tumorigenesis; furthermore, they have the ability of self-renewing and differentiation like other stem cells. They also play important role in the process of tumor invasion and metastasis. Several studies have been performed to discover the spe...
متن کاملP-130: Piwil2 Reprograms Human Fibroblasts to Germ Cell Lineage
Background The piwi family genes are highly conserved during evolution and play a crucial role in stem cell self-renewal, gametogenesis, and RNA interference in diverse organisms ranging from Arabidopsis to humans. Piwil2, also known as Hili, is one of the four human homologues of piwi. Piwil2 was found in germ cells of adult testis, suggesting that this gene functions in spermatogonial stem ce...
متن کاملEffect of Different Concentrations of Forskolin Along with Mature Granulosa Cell Co-Culturing on Mouse Embryonic Stem Cell Differentiation into Germ-Like Cells
Background: Germ cell development processes are influenced by soluble factors and intercellular signaling events between them and the neighboring somatic cells. More insight into the molecular biology of the germ cell development from embryonic stem (ES) cells and investigation of appropriate factors, specifically those targeting differentiation process, is of great importance. In this study, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The International journal of developmental biology
دوره 57 2-4 شماره
صفحات -
تاریخ انتشار 2013